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Finite waiting space bulk queueing systems 
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S U M M A R Y  
This paper extends earlier work on the stationary queue length distribution of a bulk service system with finite waiting 
space by considering two queueing systems. The first system incorporates the feature of batch arrivals with group 
service; it has compound Poisson input, general service times and a single server with variable batch capacity. The 
second system has individually arriving customers with Erlangian interarrival time distribution, general service times 
and a single server with variable batch capacity. 
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1. Introduction 

Singh [2] has studied the stationary behaviour of a finite waiting space queueing system with 
simple Poisson input, general service times, and a single server with variable batch capacity. 
In the present paper we employ a slightly altered "imbedding" from his, but essentially the same 
procedure, to consider two different queueing systems. The first system has compound Poisson 
input, general service times and a single server with variable batch capacity. This is a bulk 
queueing system, incorporating the feature of batch arrivals with group service, and is denoted 
by McX)/G~n/1/(N). The second system has individually arriving customers with Erlangian 
interarrival time distribution, general service times and a single server with variable batch 
capacity. Unless otherwise specified, the notations employed in this paper will be identical with 
those of Singh. 

2. MtX)[G(r)[I[(N) Queueing system 

This bulk queueing system can be characterised as follows: 

(i) Customers arrive in batches that are of variable size. The batches arrive one at a time in a 
Poisson process with parameter 2. The probability that n batches arrive in a time interval 
(0, t) equals 

e -  "~t (,~t ) n 

n! 

(ii) Ifp~ ") denotes the probability that n arriving batches bring a total o f j  customers, then the 
probability that j customers arrive in a time interval (0, t), assuming that each arriving batch 
brings at least one customer, may be written as 

e-Zt(2t)" p} ") 
"=1 n! 

It~ for instance, the sizes of the arriving batches are distributed geometrically, with Pr {batch 
size = v} = (1 _p)pV- t, v = 1, 2, 3 . . . .  then 

p } " ) = ( J - l ) p j - " ( 1 - p ) "  j > n > O  
n - 1  ' " 

* Now at Imperial Oil Ltd., Sarnia, Ontario, Canada. 
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(iii) The customers are served in batches of variable capacity, the maximum service capacity 
for the server being s. The server stays continuously busy and begins a service period immediately 
after the completion of the preceding period. Also, he is "intermittently available", in that 
arrivals joining the system after the commencement of a given service period must wait for the 
commencement of the next service period. (Bailey's [1] model incorporates a similar rule.) 
Let t l, t 2 . . . .  be the instants of completion of a sequence of service periods and let v. denote the 
service time ( t , - t , _  1). We assume that {v,} is a sequence of independent and identically 
distributed random variables with a common distribution function G(t) (0< t <  oo). Also, 
we assume that v,, n = 1, 2, 3 . . . .  are independent of the arrival process. 

(iv) Let s -  Y, be the capacity for service ending at t,+ 1 (n=0, 1, 2 . . . .  ). We assume that {Y,} 
are independent and identically distributed random variables, also independent of the arrival 
process. Let 

Pr{Y,=r}=br,  O<_r<_s 
= 0  r > s ,  

For the service period starting immediately'after t,, the server takes a number of customers 
equal to m i n ( s -  Y,, whole queue length). Let 

J 
Bj = ~ br 

r : 0  
and 

Bs(x) = ~ brx r 
r = 0  

with Bo = bo. 

(v) The waiting room has a fixed capacity of N customers, including those in service. An arrival 
finding the system full balks by assumption, and an arrival after joining the system does not 
renege. 

Singh's model is an M/G(Y)/1/(N + 1) queue in which state E s ,  1 is never occupied at a time 
(t .+0) just after a departure. The present model is an M(X)/G~Y)/1/(N) queue in which state 
EN may be occupied at a time (t, + 0) just after a departure, because the service capacity ( s -  Y,) 
of the system may be zero. Therefore both models give rise to imbedded Markov chains with 
the same state space {Eo, E~ . . . . .  EN}. 

3. Analysis of the M(X)/G(Y)]I/(N) system 

The analysis proceeds with the specification of a discrete parameter Markov chain which is 
imbedded in the continuous time parameter queueing process. We define the state of the system 
as E i when there are .] customers in the system immediately following a service completion. 
The transition probabilities of the imbedded Markov chain are defined as follows: 

rij = Pr {.j customers in system at (t. + 1 + 0)[ i customers in system at (t, + 0) } 

--- Pr {next state is Ejlprevious state was Ei} 

The equilibrium (stationary) probabilities of the chain are defined as 

pj = Pr {the system is in state Ei}, j = 0, 1, 2, ..., N ,  

and an associated probability generating function is written as 
N - 1  

P(x)= • pjx j. 
j=o  

Since customers may arrive in batches, the probability that a given number of customers arrive 
during a service period in the present case is different from the corresponding probability 
specified by Singh. Accordingly, if X, denotes the number of customers arriving during the 
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service period ending at t,, then the distribution of X, will be given by 

e -  Zt ().t) i 
Pr{X, = j}  = kj = ) pJ)dG(t) 

o i=1 i! 

where p}O denotes the probability that i arriving batches bring a total of j  customers, as stated 
earlier. An associated generating function is defined as 

N - 1  

K(x)  = 2 k jx  j .  
j=o  

When the above notations are employed, the transition probability matrix for the M~X)/G~r)/ 
1/(N) queueing system becomes identical with Table 1 of Singh, after changing that table so that 
r2N = INB~- 2 + lN- ~ b~_ 1 + IN- 2 b~. Likewise, the equations determining the equilibrium 
probabilities become 

pj : kj Po + (kj Bs -1 + k j _ ,  b~) P l + (kj B~ _ 2 + k j_ l  b~ -1 + kj _ 2 b~) P2 + ... 

+ (kjB t + k~_ t b2+ ... + kj_~+ xb~)p~_ 1 
+(k jbo+kj_~b  I + ... +kj_~b~)p~+ ... 

+ (kj-N+~+ ~ bo +kj-N+sbt  +. . .  + k j - s+ ~bs)pN- 

+ (kj-N+~bo + kj-N+s- 1 bl + . . .  + kj-Nb~)PN 

for j = 0 ,  1, 2 .....  N - 1  

and 
PN = INPo+( l~B~- l+ lN- lb s )p l+( INBs -2+lN- lb s - l+ lN-2b~)p2+ �9 

+ (l~+ 1 bo + l~bl +. . .  + 11 bs)PN- ~ + (lsbo +.- .  + lo bs)pN, 
where 

l ,=  kr+k,+ l +kr+2 + ... 

Following Singh (pages 244-6) one obtains 
S- -1  

Z p, 

Q(x) = i=o x~ /K(x ) -B~(x )  

From this the probabilities Po, Pl .....  PN, which specify the stationary behaviour ~f  the 
M(X)/G(r)/1/(N) queueing system may be evaluated, when a count of the number of customers 
present in the system is made immediately following every service completion. Stationary 
results due to Singh for the M~ G(r)/1/(N + 1) queue are obtained from Q (x) above if the function 
K(x)  is defined as in equation (3) of Singh. 

4. E dG(r)JII (N) queueing system 

This queueing system can be described as follows: 

(i) Customers arrive one by one, the interarrival times being independent and identically 
distributed random variables with an Erlangian distribution of order l and mean l /L Each 
of the arriving customers may be assumed to pass through l different stages, the durations of 
the stages being mutually independent random variables with the distribution 2e-~tdt(O< 
t <  oo). 

(ii) The customers are served in batches of variable capacity, the maximum service capacity 
for the server being s. The server is continuously busy and is "intermittently available" as 
assumed in the M(X)/Gm/1/(N)  case above. 

(iii) Let s -  Y, be the capacity for service ending at t,+ 1 (n=0, 1 . . . .  ). It is assumed that {I1,} 
are independent and identically distributed random variables, also independent of the arrival 
process. Let 
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P r { Y , = r } = b  r, O<_r<_s 
= 0  r > s .  

For the Service starting after tn the server takes min ( s -  Yn, whole queue length). Let 

J 
Bj = ~ br 

r = O  
and 

s 
B~(x) = y, br xr 

r = 0  

with B o = b o. 

(iv) The waiting room has a fixed capacity of N customers, including those in service. An arrival 
finding the system full balks by assumption, and an arrival after joining the system does not 
renege. 

The queueing process {Q(t)} in this system is non-Markovian in general. It is possible, 
however, to obtain a Markov chain that is imbedded in the process {R(t) }, which is the number 
of stages completed by the customers who are in the system at time t. We note that when a 
customer departs from the queueing system, the current value of R (t) is reduced by I. We define 
the state of the system as Ej when there are j stages in the system immediately following a 
service completion. The transition probabilities of the imbedded Markov chain are defined as 
follows: 

rij = Pr {next state is Ejl previous state was Ei}. 

The equilibrium probabilities of  the system are defined as 

pj = Pr {the system is in state j} ,  j = 0, 1, 2, ..., N l +  l - 1 .  

Let X, be the number of stages arriving during a service period ending at t,. Then the distribu- 
tion of X. is given by 

f ]  e-  Zt(2t)J dG(t) 
Pr {X, = j} = kj = J! 

We next introduce a new set of probabilities {ai} that are associated with the number of 
stages leaving the queueing system as customers are served in batches of variable size. Let 

a i = b , ,  i = l r ,  O<_r<_s 
= 0 otherwise. 

Let 
J 

Aj = ~ a i 
i=O 

with Ao = bo. The transition probability matrix for the system may now be constructed. It is a 
(iV+ 1)1• (N+ 1)l stochastic matrix, structurally similar to Table 1 of Singh. Since the state 
space {Ej} is finite, the system must possess a unique equilibrium distribution. The equations 
determining the equilibrium probabilities become 

pj = kj  P o + k~- 1 als P 1 + k i -  2 azs P2 +. . .  + kj_s + 1 azs p s -  1 + kj_s  az~ Ps +. . .  
+ Pz (kj A re_l)+ k j_, a,s ) + p, +a kj_,_a a,, +.. .  
q- Pzl (kj Art ~_ 2) + k j_  l al(s_ a) + k j_ 2t az~) 

+ Psi (kjAl(s- s) + kj_ l al --~ k j _  21 a2l ~ - . . .  2V k j _  sl asl) 

~ - . . .  

+Pm (kj-l(n-s) A,~s-,) + kj_ l<N-s+ a)al + kj-t(N-s+ 2) a2t +.- .  + kj-mGz) 
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+ PNI +1 (k j_ z(u- s)- 1 Al(s - ~) + kj_ I~N-, + 1) -1 al + k j_ ,(N-~ + 2)-1 azz +.-. + k j_ Nt- i aa) 
+. . .  

+ Pnt+l- l (kj-t(N-s+ l)+ i At(s-s) + kj-t(N-s+ 2)+ ~_al + 

+ k j - , U - s +  3)+ j a2~ + . . .  + k j_z~u + l)+ ~ aa )  , 

for j = 0 ,  1,2 ... . .  (N+1) / -2 .  

The above provides N l + I - 1  linear simultaneous equations, involving (N+ 1)l unknowns. 
Nl+l- 1 

The solution of this system of equations, combined with ~ p j= 1 yields the equilibrium 
j=O 

probabilities {p j}. A numerical approach to this solution is in practice satisfactory; it avoids the 
determination of the zeros of certain polynomials and of the coefficients in a power series that 
determine the desired state probabilities. If R. now denotes the number of completed stages at 
an arbitrary d_eparture epoch (in this steady state) marked by n, then the corresponding number 
of customers in the system will be given by Q,, when Q, is the largest integer such that lQ, < R. .  

No te  added in proof: 
Lwin and Ghosal [4] have studied the M/Gb/1 / (N+ 1)b queueing model, with fixed service 
capacity b, using the imbedded Markov chain method and obtaining a generating function 
which can be found from Singh's results. Gaur [3] obtains time-dependent and stationary 
solutions for the queue length distribution in a MX/MY/1/ (N)  queue, subject to constraints on 
the size of arrival batches and service batches. 
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